In this chart,
A generally useful equation to relate many of these distances: $$e=\frac{c}{a}=\frac{r}{d}=\sqrt{1-\frac{b^{2}}{a^{2}}}$$
Shape Type | Equation | Notes |
---|---|---|
Tall Cartesian | $$\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$$ | $center:\,(h,k)$ |
Tall Polar | $$r(\theta)=\frac{e\cdot d}{(1\pm e\cdot sin(\theta))}$$ | top focal point (+) bottom focal point (-) |
Tall Parametric | $$x(\theta)=\frac{e\cdot d\cdot cos\theta}{(1\pm e\cdot sin(\theta))}$$ $$y(\theta)=\frac{e\cdot d\cdot sin\theta}{(1\pm e\cdot sin(\theta))}$$ | top focal point (+) bottom focal point (-) |
Rotated Parametric | $$\left(\begin{array}{c} x\\ y \end{array}\right)=\left[\begin{array}{cc} cos\phi\ & -sin\phi\\ sin\phi\ & cos\phi \end{array}\right]\cdot\left(\begin{array}{c} \frac{e\cdot d\cdot cos\theta}{(1-e\cdot sin(\theta))}\\ \frac{e\cdot d\cdot sin\theta}{(1-e\cdot sin(\theta))} \end{array}\right)$$ | $\phi$ is the angle of rotation and the equation implies matrix multiplication. |
Rotated Parametric | $$\left(\begin{array}{c} x\\ y \end{array}\right)=\left(\begin{array}{c} h\\ k \end{array}\right)+a\cdot\cos(\theta)\left(\begin{array}{c} u_{x}\\ u_{y} \end{array}\right)+b\cdot\sin(\theta)\left(\begin{array}{c} v_{x}\\ v_{y} \end{array}\right)$$ | $\mathbf{u}$ is the “unit” direction vector of the principle axis and $\mathbf{v}$ is orthogonal to $\mathbf{u}$. |
Wide Cartesian | $$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$$ | $center:\,(h,k)$ |
Wide Polar | $$r(\theta)=\frac{e\cdot d}{(1\pm e\cdot cos(\theta))}$$ | top focal point (+) bottom focal point (-) |